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1. INTRODUCTION 

IN MANY naturally occurring phenomena, thermal convection 
happens in an unstably stratified fluid layer which is bounded 
from above and/or below by stably stratified regions. For 
such configurations the convective motion may extend a 
substantial distance into the adjacent stable zones. If the 
convective mixing is efficient enough, the stable thermal 
stratification may be weakened sufficiently to allow the 
motion to penetrate far deeper into the stable zones than 
might be predicted by studying the initial state. Such states 
of penetrative convection are the subject of the present study. 

In an earlier paper [l], the onset of penetrative convection 
in a binary mixture fluid layer was studied. In that paper a 
coupled convection mechanism was investigated which was 
due to the presence of two diffusing components, widely 
separated in values and also possessing a density maximum in 
the interior of the fluid. To understand the physical processes 
involved in such motions, the model in ref. [l] was chosen 
to be as simple as possible, namely, an infinite fluid layer in 
which temperature and concentration varied linearly with 
height. The variation of density with temperature was 
assumed to be quadratic while it was assumed to be only 
linear with concentration. Attention was contined to the 
linear stability of that configuration and the study was fur- 
ther restricted to the case in which the temperature strati- 
fication was destabilizing while the concentration strati- 
fication was stabilizing. Nevertheless, this model was still 
somewhat complex and the analysis in ref. [I] was contined 
to Prandtl and Lewis numbers of 10 and 0.01, respectively. 
These parameter values realistically model a mixture of salt 
and water, and were chosen to allow for comparison with 
previous work on penetrative convection as well as on double 
diffusive convection with monotone density variation. 

The present study should be viewed as an extension of the 
work performed in ref. [l] and was undertaken to cover the 
onset of convection for a wider range of both Prandtl and 
Lewis numbers. This is to allow for the application of pen- 
etrative double diffusive convection to a variety of fluid 
mixtures. 

2. THE MODEL AND ITS SOLUTION 

The model analyzed in this work is the same as that of ref. 
[l] and consists of a heated fluid layer of depth, d, which is 
infinite in the horizontal direction. The coordinate system is 
rectangular Cartesian with the x- and y-axes in the horizontal 
direction and .z in the vertical. The fluid layer is assumed to 
support both constant temperature and constant concen- 
tration gradients in the vertical direction which are given by 

i‘= T,--(d,--z)AT/d, (1) 

s = S,+(d,-z)AS/d (2) 

where T0 and So are the temperature and the solute con- 
centration values at the specific vertical location, dw Equa- 
tions (1) and (2) define the motionless basic state the stability 
of which is being analyzed. 

Before proceeding with the convection analysis it is 
instructive to specify the response of the fluid density to small 

variations in both temperature and concentration. Custom- 
ary analytical approaches to double diffusive convection, 
e.g. Turner [2], restrict the density variation of the fluid to 
be linear with both temperature and concentration changes. 
This is our point of departure from previous studies of double 
diffusive convection. This study will be concerned only with 
those fluids in which the density variation with temperature 
is quadratic. This is because the primary motivation for this 
study, as well as ref. [l], is to investigate the fluid response 
in a solidifying binary alloy that belongs to a certain class 
of mixtures characterized by this specific density variation 
within the fluid layer. A good representative of this class is 
the pseudo-binary system Hg,_,Cd,Te, which is normally 
assumed to be a mixture of mercury tellutide, HgTe, and 
cadmium telluride. CdTe. The nhvsical and chemical charac- 
teristics of this material have be&n under intensive scientific 
research due to its unique electronic and electro-optical prop 
erties [3]. Among the well-established physical properties for 
this system is the density variation of the liquid phase with 
both temperature and concentration. Figure 1 shows this 
variation as measured by Chandra and Holland [4] for three 
mole fractions, x. It is clearly seen in this figure that the 
measured densities possess maxima in the neighborhood of 
the freezing point for at least a moderate range of the mole 
fraction x for mercury rich mixtures. This variation of the 
density with temperature and concentration appears to be 
well approximated in the range of mole fraction, x, for 
0 < x < 0.10 by the following equation : 

p = 7.931{1-1.3515x 10-6(T-1028)2 

-3.1819x 10-3(S-5)} (3) 

where p is in g cm- *, Tin K, and S in percent mole fraction 
(i.e. S = 100x). 

The intent of this study is to investigate the influence of 
such a density variation on the onset of double diffusive 
convection. Thus, in the following, the density dependence 
on temperature and concentration will be assumed to obey 

P = pdl -V- ~0)*+BWW (4) 

where 

ap 
a=2pTaT’ p=!!$ 

and p0 is the density at temperature To and concentration, 
&. In this case the height, d,, is the position of maximum 
density when AS = 0. 

The linearized Boussinesq equations for the perturbation 
functions w, Tand S with the density representation (4) and 
for the basic state (1) and (2) takes the following form : 

k -(D’-a’)]@‘-a+ = a’(l-I$)z)T+a’SRs (5) 

fp-(D’-a*)]Z’= -Rw (6) 

[p-L(D’-a*)]S = w (7) 

where D = d/dz. The boundary conditions on the per- 
turbation functions for free upper and lower surfaces takes 
the form [l] 
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FIG. 1. Density variation of Hg,_$d,Te with temperature 
and concentration: 0, measured data of ref. [4] ; -, 

equation (3). 

w=D%=S=T=O, at z=O,l. (8) 

Here, R, Rs, L and (r are the Rayleigh, solutal Rayleigh, 
Lewis, and Prandtl numbers, respectively, and are defined as 
follows : 

R = %c(gWWi ; & _ t-wSd3 ; 

KV KY 

where g, K, K,, and v are the gravity constant, the coefficients 
of thermal and mass diffusion and the kinematic viscosity, 
respectively. In equations (5)-(7) a is the horizontal wave 
number, which is real, while p, p = pr + ipi, is the complex 
frequency. pr, is the perturbation growth rate, and pi. the 
perturbation frequency. The complete derivation of the 
equations with the assumptions and justifications used may 
be found in ref. [ 11. 

The homogeneous set of equations (5)-(7) with the homo- 
geneous boundary conditions (8) form an eigenvalue prob- 
lem that can be represented in the following functional form : 

P = p@, 4. R, & u,O. (9) 

This eigenvalue problem consists of a set of coupled linear, 
ordinary differential equations with six parameters. Such 
problems are solved by determining the eigenvalue, p (in this 
case both pr and pi), for specific values of the parameters 
involved in the equations. If, for a specific set of values of 
all the parameters in equation (9), pr is found to be positive, 
then the perturbations are unstable, otherwise they are stable. 
A positive value for pr, pr > 0, implies that the motionless 
basic state will evolve into convective motion in the form of 
rolls or cells. Whenever several simultaneous eigenvalues 
exist for the same values of the parameters, the one with the 
largest value for p, is called the mode of maximum growth 
rate. The monotone modes are those for which p, = 0, for 
anyp, while the oscillatory modes are those for whichp, # 0. 

The results discussed in the next section were produced 
using the same technique as in ref. [I]. The details of the 
numerics and the various verifications of the computer codes 
used can be found there. 

3. RESULTS AND DISCUSSION 

In ref. [l] the results regarding the onset of convection 
were presented in the form of stability diagrams in the R-R.s 
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FIG. 2. Regions of stability and instability in the first quad- 
rant of the R-RF plane for L = 0.01, 0.1, and 0.2, and for 

lo = 2.0 and 0 = 10. 

plane, each for a different set of values of the parameters. 
Furthermore, the discussion in ref. [l] was limited to the 
first quadrant of the R-RF plane because on the one hand, 
according to previous work [l, 21, both the monotone and 
the oscillatory modes of instability were found to possess 
maximum growth rates in this quadrant only. On the other 
hand, the original physical contlguration envisioned and 
which motivated this study was one in which the temperature 
gradient of the basic state was destabilizing, R > 0, while the 
concentration gradient was stabilizing, & > 0. The results 
in ref. [l] indicated that the stability and instability regions 
in that section of the plane were delineated by two curves 
the positions of which depended on the parameter values 
used. Each set of two curves originated from a different 
position on the ordinate which are the points of critical 
instability belonging to the case of penetrative convection in 
a single component fluid. The two curves divided the first 
quadrant of the R-Rs plane into three distinct regions. The 
three regions were identified as regions I, II, and III and were 
defined in the following manner (see Fig. 2 of ref. [ 11) : in 
region I, all instability modes were damped and the basic 
state was stable to imlnitesimal disturbances. In each of 
regions II and III there existed at least one unstable mode. 
The mode of maximum growth rate in region II was oscil- 
latory (pr > 0, pi # 0), while in region III it was monotone 
(pr > 0, pi = 0). This specific division of the quadrant into 
the stable and unstable zones resemble the regime diagram 
for the classical double diffusive convection case discussed 
by Turner [2]. 

The analysis in ref. [l] also revealed that the division of 
the first quadrant of the R-RF plane into the respective three 
regions was characteristic of the problem and changed only 
quantitatively with 1,. As the value of A,, is increased, the 
position of the critical point of instability at AS = 0 is shifted 
to higher Rayleigh numbers, R. Also, both of regions I and 
II appeared to increase substantially with increasing I,. 

The intent here is to generalize the results of ref. [l] to a 
wider range of fluids possessing the specific density variation 
with temperature and concentration, as discussed in Section 
2. To achieve this, the fundamental parameters entering the 
eigenvalue problem (9) and reflecting the different physical 
characteristics of the fluid are varied. These are the Prandtl 
and Lewis numbers, u and L, respectively. Figure 2 illustrates 
the modification of the basic stability criteria brought about 
by changing the Lewis number. This figure shows the three 
stability and instability regions in the first quadrant of the 
R-h plane for three values of L and for tixed values of u 
and I, at 10.0 and 2.0, respectively. It is seen that as L is 
increased, the area of the plane where oscillatory modes of 
instability are dominant decreases while the stability zone 
grows. Also, for a fixed value of c, the regions of dominant 
oscillatory unstable modes appear to be embedded within 
each other for successively higher values of L in such a way 
that the upper bound for this area is the one delineated for 
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FIG. 3. Same as Fig. 2 but for c = 0.1. 

L = 0.01. Figure 2 suggests further that in the limit as L + 
co, while u is held constant, the width of the oscillatory 

unstable region, region II, will shrink in size to zero. Conse- 
quently it may be concluded that for this limiting case, only 
monotone modes possess maximum growth rates. Further 
analysis demonstrates that the three stability and instability 
zones which are delineated by the curves for L = 0.01 in Fig. 
2 are very close to the asymptotic picture obtained in the 
limit as L + 0. This implies that, as L approaches zero, the 
three characteristic stability and instability zones for this 
problem are not altered substantially from the respective 
zones shown for L = 0.01. 

Figure 3 is similar to Fig. 2 except in this case a different 
Prandtl number is used. The variation of the three stability 
and instability zones with L are shown for & = 2.0 and 
u = 0.1. Again, it is observed that the oscillatory unstable 
region diminishes in size with increasing L while the stable 
region grows. Also it is seen that the point at which the 
oscillatory region originates, labeled T in the figure, shifts to 
larger values for both R and Rs with increasing L. This point 
is also seen in Fig. 2 for both of the cases L = 0.2 and 0.1. 
For convenience the point will be called the triple point since 
it is the intersection of the three curves that divide the tist 
quadrant of the R-Rs plane into the different stability and 
instability regions. It is observed that to the left of the triple 
point there exists only a single zone of instability which is 
separated from the stable region by the marginal stability 
curve. The stable region in this case is below the curve while 
the unstable region is above it. Furthermore, the unstable 
region to the left of the triple point is characterized by having 
only monotone modes of maximum growth rates. To the 
right of the triple point there exist the three customary 
regions of stability and instability. It should be pointed out 
that a triple point, at vanishingly small values of Rr, exists 
for each of the cases discussed here and in ref. [l]. However, 
some of these points evidently lie very close to the ordinate 
and are not visually discernible in the figures. 

Figure 4 illustrates the modification of the stability and 
instability regime diagram, again in the same region of the 
R-Rs plane, as a result of variations in the value of the 
Prandtl number while L and I, are held fixed. It shows a plot 
of the three regions for 1, = 2.0, L = 0.1, and D = 10.0, 1.0, 
0.1, and 0.05. Several interesting features are observed. First, 
it can be seen that the area in which the oscillatory modes 
are the most unstable shifts up diagonally with decreasing 
Prandtl numbers. This is manifested in the shift of the triple 
point to larger values of both R and Rs. The trend in this 
figure suggests that in the limit as Q -+ 0, the triple point will 
have moved to very large values of both R and Rs leaving a 
substantial portion (if not all) of the first quadrant of the R- 
Rr plane devoid of a region in which the modes of maximum 
growth rates are oscillatory. Thus in the limit as (I + 0, there 
will remain only one region of instability separated from the 
stable zone by the marginal stability curve. The modes of 
maximum growth rate in that unstable region are monotone. 
It is also observed that the zones of stability, region I, become 
larger with decreasing 0. 
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FIG. 4. Regions of stability and instability in the first quad- 
rant of the R-h plane for u = 10, 1, 0.1, and 0.05, and for 

1, = 2.0 and L = 0.1. 

The second feature observed in Fig. 4 is that all the regions 
where the most unstable modes are oscillatory appear to 
originate from a single smooth curve for different values of 
6. This is the solid line in the figure. Further analysis shows 
that this curve can be constructed by establishing, in the R- 
Rs plane, the location of a second marginal stability mode, 
pr = 0, in addition to the one delineating the lower boundary 
of region II, for the same values of (r, L,, L, and fi. Depend- 
ing on the value of tr, it is found that there exist two sim- 
ultaneous modes in the first quadrant of the R-Rs plane 
possessing pr = 0. One of these modes has pi = 0 while the 
other has pi # 0. The marginal stability modes making up 
the solid line in Fig. 4 are in fact neutral stability modes (i.e. 
pr = pi = 0). Whether two marginal stability modes exist for 
a single value of Rr, or only one, depends on the value of u. 
Of course, whenever both modes exist, the one for which 
pi # 0 occurs for a lower value of R and hence is the relevant 
one. This is the reason why the neutral stability curve shown 
in Fig. 4 was never discussed before. However, since the 
location of the neutral stability modes coincides with the 
locus of the triple points for all u, the identification of their 
position in the R-RF plane is very useful. As shown in Fig. 
4, the curve on which these modes lie, forms an envelope for 
the oscillatory region, region II, in addition to the stable one, 
region I, for all values of u. Thus this curve defines an 
absolute upper boundary for both the region of stable modes 
and the region of oscillatory most unstable modes in the first 
quadrant of the plane. 

The qualitative modification of the three stability zones, 
as well as the presence of the envelope curve discussed above, 
were found to be independent of the specific value of l,,. Figure 
SshowsthevariousregionsforL = O.l,& = 1.6andu = 1.0, 
0.1 and 0.05. This figure exhibits an almost identical trend 
to that shown in Fig. 4, except for the quantitative differences 
brought about by the values of the parameters. Note, 
however, that the curve delineating the upper boundary of 
region II and the locus of the triple points in Figs. 4 and 5 
are not identical. There exists a small region in the R-Rs 
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FIG. 5. Same as Fig. 4 but for A,, = 1.6. 



898 Technical Notes 

4. 

3.0 ,#’ L = .oi 

! .05 ‘I r* 0 
7 2 2.0 :’ ,A 

~ : _.=-’ 
Cfl 

: 0.1 

.' 
,A 

1' 
r' ..*-r 

_/- 
__-- 

:’ 
I' 

/ _/- 0.2 
1.0 ,,’ _..---*- ________------ 

, ‘,_$I.__--- ,;__---_-____--- 

0.0 ; I f I 
0 200 460 600 600 

RS 

FIG. 6. The locus of the position of the triple points for 
d,, = 2, and for L = 0.2,0.1,0.05, and 0.01. 

plane between these two curves in which the most unstable 
modes are oscillatory. The width of this region appears to 
diminish with decreasing (I and thus may not be discernible 
in these figures for lower values of cr, but nevertheless it 
exists. 

The position of the solid curves in both Figs. 4 and 5 
represents an absolute lower bound for the instability region 
in the first quadrant of the R-Rs plane. This is to say that 
any basic state contiguration for which both R and Rf fall 
above that curve is linearly unstable. Thus the location of 
this curve is valuable as a general stability criteria for double 
diffusive conv~tion. 

Figure 6 shows the various envelope curves formed by 
the loci of the tripie points for four Lewis numbers. Two 
significant features may be observed in this figure. The first 
is that all curves shown originate from a single point on the 
ordinate. This is the location of the critical point for AS = 0. 
The second is that the inclination of each curve to the abscissa 
appears to increase with decreasing values of L. It may be 
concluded on the basis of this figure that the region in which 
the monotone unstable modes are dominant diminishes with 
decreasing L for any one value of fi. However, this does 
not imply an equivalent increase in the stability region since, 
as was shown earlier, the size of that region is a function of 
6. Depending on the value of a there could be a substantia1 
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region below each of these curves in which the most unstable 
modes are oscillatory. It was also found that all curves shown 
in Fig. 6 collapse onto a single curve in the first quadrant of 
the R-Rs plane when plotted on an R-@/L) scale (i.e. on 
a redefined Rs scale to Rs’ = figAS&,Q). 

4. CONCLUSIONS 

The analysis of the previous section revealed that the three 
stability and instability regions in the first quadrant of the 
R-Rs plane may be altered substantially by varying either D 
or L. It was found that the region in which the oscillatory 
modes are found to possess maximum growth rates, in that 
portion of the plane, may diminish in size with increasing L. 
In fact, the results indicated that in the limit L -) co only 
monotone modes possess ma~mum growth rates. This is a 
situation in which the instability is manifested by steady 
convective motion. This is also the case where mass diffusion 
has the dominant influence. Furthermore, it was found that 
for fluids possessing vanishingly small Prandtl numbers, 
again, only monotone modes have maximum growth rates 
for moderate values of both R and Rr. In this case, again, 
the instability is manifested by steady convection. 

The analysis above lead also to the establishment of a 
simple general criterion for the onset of penetrative double 
diffusive convection. This was manifested by a single curve 
in the lirst quadrant of the R-Rs plane for all values of e 
and L. The area above the curve comprises of a region of 
instability &rough monotone modes while below it the basic 
state confi~tion is either unstable through oscillatory 
modes or stable. There exists one such curve for every value 
of a,. 
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INTRODUCTION 
accident (LOCA). This temperature separates the high tem- 
perature region of a fuel pin where inefficient film boiling or 

DETERMINATION of the rewetting or minimum lilm boiling vapor cooling takes place, from the lower temperature 
temperature is of great importance in reactor safety analysis region, where more efficient transition boiling occurs. As the 
during the reflooding phase of a hypothetical loss of coolant minimum film boiling temperature is the boundary between 

transition and t3lm boiling its knowledge is required in the 
application of transition and film boiling correlations. 
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